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NOTATION

Coefficients for piecewise hull function

-

koy
Breadth

Slope of a linear function

Constant of a linear function
ko(x-x')

Froude number

Hull Function

Green function

Gravitational acceleration
Draft

Heaviside function

Integral notation

g/U2
Length

Variables

Positive integer number
(2n+1/2)T or 2um
(2n+2+1/2)1 or (2n+2)m

Speed
Free-surface wave height

Water density

Velocity potential




ABSTRACT

A computational method of free-surface wave height prediction
for a ship in steady motion has been developed through application
of Michell's thin ship theory. Numerical computation for two
different hulls has been presented. The results for the Wigley
hull agree well with the experiment. However, the agreement between
the numerical results and the experiment for the SL7 container ship
is not satisfactory. Further study in analytical method is necessary
to improve the numerical results for a ship with a bulbous bow.

ADMINISTRATIVE INFORMATION
This work was performed under the General Hydromechanics Research Program and
was authorized by tue Naval Sea Systems Command (NAVSEA), Hull Research and Tech-
nology Office. Funding was provided under Program Element 61153N, Task Area

SR 0230101, and Work Unit 1542-700.

INTRODUCTION

The analytical method for computing the free-surface wave height of a ship is
one of the most important tasks in naval hydrodynamics. The steady ship wave pro-
file is usually linearly superimposed on other free-surface wave profiles. 1In the
computation of the relative bow motion of a naval ship in waves, it is necessary to
know the wave height due to the steady forward motion before computing the transfer
functions. The analytical study of deck wetness also requires the knowledge of the
wave profiles in steady motion.

The present computational method has been developed througin an application of
Michell's thin ship theory. This theory is first-order and linearized. Even though
there is some limitation in the application of thin ship theory to ships with large

block coefficients and with blunt bows, the results of this theory are reliable for
* -
e - X 5 .

various hull forms as concluded in Referenece 1. T

Two hull forms have been chosen for the numerical computations in this presen-
tation: a Wigley hull and an SL7 container ship. The numerical resulis for the
Wigley hull, which is a mathematical hull form, show satisfactory agreement with the
experiment. However, the numerical results for the SL7 are not satisfactory. There

are some discrepancies near the bow region for even small Froude numbers.

*A complete listing of references is given on page 17.




EQUATIONS OF FREE-SURFACE WAVE HEIGHT
The coordinate system 0,X,y,z is fixed in the ship with o,x,y containing the

longitudinal centerplane, o,y,z the midship section, and o,x,z the undisturbed
water surface if the ship is at rest. The vector o,x points toward the stern, and
the ship is moving with speed U toward the negative x-axis. With assumptions that
the fluid is inviscid and the flow is irrotational, the governing equation and

. 2
boundary conditions are:

(i) in the fluid domain

6 +o +¢ =0 (1)

XX vy 2z

(ii) Bernoulli's equation on the free surface

% [(¢x-U)2+¢§+¢§] + pgy + p = const. (2)

(iii) on the body surface, z = f(x,y)
£ (¢X—U) + fy¢y -6, =0 (3

(iv) on the free surface, y = n(x,z)
M (B0 = 6+ =0 (%)

Equations (2), (3), and (4) are exact boundary conditions. In order to derive
the solution of the thin ship theory, it is necessary to linearize these equations
with the assumptions that the derivatives of ¢, f, and n are small and, hence,
second degree terms are negligible. The linearized conditions become

(ii) free surface condition

¢+ ko =0 (5)




(11ii) body boundary condition

¢z = U fx (6)
(iv) the free-surface wave height
=¥ 6 (x,0,0) )
n 3 X s Uy

The solution of Equation (1) with tbe boundary conditions, Equations (5) and (6), is

given by

U .. . b
¢(x,y,2z) = ﬁJ‘JG(x,y,Z;x »y ,0) fx,(x ,¥ ) dx’dy (8)

where G is the Green function as given in Reference 2 as

oc

n
1 4k : 2
G(x,y,23x ,y,z7) = - + — o+ — sec” 8 a6 dk exp [k(y+y )]
0 0

LRI

n
2
—x - ino
<« cos [k(x-x")cosf] cosz[k(z 2z )sin@] + 4”kOJ. 40 secZO
k - k sec™@
(o} 0
X exp [ko(y+y')sec28] sin [ko(x—x')secﬁ]
e 2
cos [ko(z—z )sinBesec” ) (9)
2
where k = g/U
-2 -2 A 2172
r = [(x=x")"+(y-y )" +(z-27)"] /
£ = (x4 a9 2 (e-2 22




Here, (x,y,z) is the point where the potential is sought and (x",y”,z”) 1is a source
point. With substitution of Equation (8) into Equation (7) and integrating by parts,

the free~surface wave height becomes

L
2 1
n = E?E J].C(X,0,0;x sy ,O)fx,x,dx’dy -.[Gfx,dy' 10)
. L
X772
The fact that G .- =~ Gx has been applied in the derivation of Equation (10).

NUMERICAL COMPUTATION
In order to simplify the numerical computation, Equation (9) is expressed in

different form3

G(x,0,03x 7,y ,0) = I 4 J

B

. -2
(2+koy sec26) e dgf

4k
= -2 qeczﬁ 4o
n . 2,32 2,92
0 (Q+koy sec 6)7 + [ko(x—x }sec 8]

Y]

3

koy'seczx
8H(x-x") ko sec” e sin [ko(x—x')seCG] ds (11)

0

where H(x) is the Heaviside function, defined as 1 for x > 0, 0 for x < 0, and 1/2
for x = 0. By substitution of Equation (11) into Equation (10), the free-surface

wave height is expressed as




L
2

2
U sy .
n = g .[I(I+J)fx»x,dx dy --f(I+J)fx,dy . 12)
X' ==
The first term of Equation (11) can be rewritten as given in Reference 4
il
2 @ 2 . =1
({cos™0+k y7) e = d¥
I = d@j > 5> 5
o 0 (Lcos 6+koy') + [ko(x-x')cos@]
i
2
=I Q(a,b,8) db (13)
0
where
) (Qc0520+a) e-i de
Q{a,b,0) = 5 5 2 5 (14)
(Lcos™B+a)” + b" cos 0

0

with a = koy' and b = ko(x—x'). The general behavior of the integrand of Q(a,b,9)
is explained in detail in Reference 4. The method of numerical evaluation of
Q(a,b,0) in this report is different from that of Reference 4. In this represen-
tation the integrand is differentiated with respect to { and set to zero in order to
find extreme values with Qcoszd + a = v, the maximum or minimum values of the

integrand occur in the following solution

v3 + coszt"v2 + bzcosze'v - bzcosaﬂ =0 (15)

There are three complex solutions of Equation (15) which may be designated as Vys

Vo and v, where the maximum or minimum values occur in the integrand of 0.

3




T .

hWe =2 Bs T Byt T (16)
cos 0 cos cos P

Only the real solutions are used in the numerical evaluation, and, in most cases,

there will be one or two real solutions. 1f there are two real solutions, these
2

two solutions are separated from the point Qo = -a/cos"®. At this point the

integrand of Q becomes zero. This case is represented graphically in Figure 1.

Figure 1 - Integral Regions of Q

For example, if there are two solutions, the integral region is subdivided into four

- . . < a 1 I < ’w m‘ - N a0 a < ; G ) .
subregions: Al(O <1< ka), AZ(Qa < & LO), A3(xO <K< Lb), and Aa(xb N < ®)

Here, Qa and Qb are determined as follows

L =2, - K(QO—Q ) a7

and

-
1

b QZ + K(Qz-io) (18)

where K 1s a constant which depends upon a, b, and ©. The specific value of the

constant K which is employed in any particular computation falls between 1 and 10




and is found by examining the numerical stability of the algorithm. Each hull form
and operating condition may require the setting of different integration limits.
The process of selection of K is straightforward but is not automatic, and requires
the attention of the investigator. When a and b are small, the integrand of Q
increases slowly between O and 21, and then decreases rapidly between 21 and 10.
Between lo and 22, the integrand increases rapidly and decreases slowly when i is

larger than 2 Therefore, the discretized distances for numerical integration are

5
different in those subregions. In subregion A2 and A3, for example, the integration
step is smaller than that of A, and A,. This approach is employed in order to

1 4

reduce computational time.
In each region, the integrand of Q is computed numerically. As a special case,

when 7 = 7/2, Equation (14) becomes

e S

AN
Q (a)b’_z_) = a (19)

In order to show the behavior of the Q-function, the integrated values at each
region are given in Table 1 for a = -0.12 and b = 1.0. The first column indicates
the J~variable and the following three column pairs show the integrated values of 9
at three different divisions: Al, Az, and A3. The last column is the total Q-values
at each given 7. The integral of the last column with respect to 9 becomes the
result of I-integral The integrated values of Q are small positives when £ is about
70 deg and less in this case. For higher @, Q becomes large and negative. The
I-integral is always negative.

In the computational procedure, the I-integral is substituted into Equation

(12), and the first and third terms are computed numerically.

The second term of Equation (11) can be rewritten with change of variable,

sec? = t as follows

sin [ko(x—x')t] dt (20)

J = —8kOH(x—x’)J‘
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If fx'x' is expressed in Equation (12) as

b o e e -
fx X Aij Bijx +y (Cij Dijx ) (21)

the second term of Equation (12) can be integrated piecewise over the x“y” plane

and becomes

M-1 N-1 3
- - - 2,¢C - - -
RN = - - + ,+ . .
J]fo x dx dy 8 2 2 H(x-x ){-—EL—[Aij+Bijx y (CiJ Dle )]
i=1 j=1 °
J3 JA c J5 S
+ 25 (B 4D, .y")- —2= (C. 4D, x")- == D_. (22)
2 ij i3 2 i ij 3 ij
k k k
o o o
where
.2
o ekoy t
J = = —— cos [k (x=x7)t] dt, p = 2,4 (23)
PsC ) o
1 Pyl
and
. 2
koy t
J_ = € sin [k_(x-x7)t] dt, p = 3,5 (24)
pP,S 2 [}
1 Pyl

With fx,(—L/Z,y') = E, + ij', the fourth term of Equation (12) can be integrated

as




In Equation (25), the Heaviside function is satisfied by requiring Jl . and J3
L » S

to be zero at x = X.

While J and J s include harmonic functions, the numerical evaluation is
’ ’

performed in each cycle of the periodic function

. 1 . N
ko(x-x Yt = (n+ E) -, ono=0,1,2... (26)
When n = 0, to = W/Zko(x—x') and LU must be larger than 1. In the region between
9 3
1 and s the substitution of variables u™ = t7 - 1 applied to Equation (23) vields
Vel k oy (1
to— . 0) (1+u”™) -
J = _— cos [k (x=x"Y¥1+u~ | du (27)
p,c p+l o
2,2
(1+u™)

Equation (27) is more convenient than Equation (23) in numerical computations for
n < 1, but for n > 1, Equation (23) is used in the numerical evaluation.

When koy' is small, there are many harmonic oscillations before the exponential
function decays for large t. In this case the rational-exponential term in
Equation (23) is replaced with a simple linear function so that the integral can be
done easily. With a = koy', b = ko(x-x'), b, = (2n+1/2)n and t, = (2n+2+1/2) -,

J c becomes

t2 2 t2
at Bi
—£ ——— (os bt dt = (Blt+Bq) cos bt dt = W (t]-t,) (28)
p/?_— - v
tl t t -1 tl
With the same analogy and in this case, ty = 2o and t, = (2n+2) -, Jp is given by
t t
2
2 at2 - By
—2——— sin bt dt = (B t+B,) sin bt dt = = (1) 1)) (29)

p‘/ 2_
t t -1 Ll

10




—

In each interval where the integrand becomes zero, B, is computed, and with Equa-

tions (28) and (29), J and J are approximated,1respectively. Values of J
pPscC P, S p,c

and Jp,s for a = -0.12 and b = 1.0 are computed and given in Table 2. The first row
shows the results of Equation (27) with to = 1.5708. The second row shows the
numerical integral of Equations (23) and (24) with 1.5708 < t < 7.853Y8, As shown
in Table 2, the integrated results of Equation (27) are dominant in the whole region
of computation.

In order to validate the numerical results of Equation (12), two hull forms
have been selected: a Wigley hull and an SL7 container ship. The Wigley hull is a

mathematical hull form which is represented as

B 4x2 2
£(x,y) = 3 (1.0- =) {10 L (30)

where L = 20 ft, B = 2 ft, and H = 1.25. The block coefficient of this hull is
0.444. The SL7 is a container ship with a large bulbous bow; its sectional hull
offsets are given in Table 3. Its length is 880.5 ft; width, 105.8 ft; and draft,
34.1 ft. The block coefficient of the SL7 is 0.53.

Figure 2 shows the wave profiles of the Wigley hull for Fn = 0.266 and 0.452.
The wave profiles are computed at the centerplane where z = 0, and the experimental
results are measured at the hull surface., For F1 = 0.266, the numerical results
agree fairly well with the experiment.S For Fn = (0.452, there is some discrepancy
near the bow and the region aft of the midship section. As shown in Reference 1,
at higher Froude numbers, the numerical results of various analytical methods do not
agree well with the experiment in the bow region. This indicates that the effect
of trim and sinkage might be important when the speed is high.

Figure 3 shows the computed wave profiles for the SL7. The agreement between
the numerical results and experiment6 is not satisfactory for this hull. The
large bulbous bow might be the cause of the discrepancies. The thin ship theory
assumes that hull function is closed at the bow and stern, and the assumption is

violated for this hull.

11




TABLE 2 - NUMERICAL EXAMPLE OF J'p c AND Jp s
b4 ’
koy = -0.12 AND ko(x—x Y = 1.0
Range of
Variable u or t Jl,s J2,c J3,s JA,c J5,s
0-1.21136 L
Equation (23) 0.67517 0.27498 0.52425 0.23789 0.42996
1'5708T7'85398 0.16246 ~0.04389 0.04810 |~0.00867 0.01476
Equation (20)
Total 0.83756 0.23109 0.57235 0.22922 0.44472

12
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CONCLUSIONS

The thin ship theory has been applied for the computation of the free-surface

wave height produced by a ship in steady forward motion. For a Wigley hull, the
agreement between the computation and experiment 1is fairly good. However, the
numerical results for an SL7 show large discrepancies from the experiment. It
seems that the inclusion of the effect of a bulbous bow and transom stern to the
present method is necessary. Further, the effects of trim and sinkage should be

included in future developments.
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